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This paper is a generalization of the models considered in J. Stat. Phys. 128, 1365 �2007�. Using an analogy
with free fermions, we compute exactly the large deviation function �LDF� of the energy injected up to time t
in a one-dimensional dissipative system of classical spins, where a drift is allowed. The dynamics are T=0
asymmetric Glauber dynamics driven out of rest by an injection mechanism, namely, a Poissonian flipping of
one spin. The drift induces anisotropy in the system, making the model more comparable to experimental
systems with dissipative structures. We discuss the physical content of the results, specifically the influence of
the rate of the Poisson injection process and the magnitude of the drift on the properties of the LDF. We also
compare the results of this spin model to simple phenomenological models of energy injection �Poisson or
Bernoulli processes of domain wall injection�. We show that many qualitative results of the spin model can be
understood within this simplified framework.
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I. INTRODUCTION

Dissipative systems are generically systems for which a
few relevant degrees of freedom can be singled out and obey
closed dynamical equations: typically a fluid, where the ve-
locity field obeys the Navier-Stokes equation, belongs to this
category. Another well-known example is given by granular
materials, where the identification of relevant variables �col-
lisions� is even more evident. The lack of completeness,
caused by the selection of some degrees of freedom, gives,
however, these systems a nonconservative character, as en-
ergy flows continuously from relevant degrees of freedom
�kinetic energy� to irrelevant ones �thermal agitation�. As a
result, the dissipative systems are by nature very different
than the systems usually suitable for the use of classical sta-
tistical physics, where the conservation of energy is an un-
avoidable assumption. In particular, the whole set of tools
devised by statistical physics can be of questionable use,
even in situations where a statistical approach seems natural:
it is very tempting to interpret turbulent systems, or a vi-
brated granular matter, in terms of effective temperature, cor-
relations, Boltzmann factor, etc., but the soundness of such
an approach is often questionable.

Quite recently, the interest of physicists has been drawn to
the injection properties of dissipative systems for several rea-
sons. First, it was easily measurable experimentally, and the
measurements showed that, contrarily to what was usually
expected, the injected power fluctuates a lot, is not Gaussian,
and does not obey the usual simple scaling arguments �2,3�.
Moreover, the injection is by nature very important in dissi-
pative systems, since it is required to draw the system out of
rest; thus, it is natural to study specifically this observable,
which is at the same time responsible for the existence of the

stationary state, and is strongly affected by it �4�. Finally,
some theoretical works on the so-called “fluctuations theo-
rems” had suggested a possible symmetry relation in the dis-
tribution of the fluctuations of the injected power, a sugges-
tion vigourously debated since the works of Refs. �4–9�.

In studying the fluctuations of global �macroscopic� vari-
ables of a disordered �turbulent� dissipative system, one
faces soon a crucial problem: contrary to the statistical phys-
ics of conservative systems, no global theory is at hand here
to predict the level of fluctuations, the physical meaning of
their magnitude, the skewness of the distributions, etc. All
these features are intimately connected to the statistical sta-
tionary turbulent state, but in a way currently beyond our
knowledge. A way to make progress towards a better under-
standing of these issues is to consider toy models of dissipa-
tive systems where some features of real systems are repro-
duced, and analyze the structuration of the stationary states.
If one can find for these systems an intimate connection be-
tween their injection properties and their dynamical features,
such rationale could perhaps be adapted to more realistic
systems. Such a procedure has been successfully applied in
the study of fluctuations of current for conservative systems
�10�.

In this paper, which follows a former one �1�, we study a
one-dimensional model of dissipative system, which has the
advantage to allow for an exact description. This model con-
sists of a chain of spins subject to an asymmetric T=0
Glauber dynamics, and is driven out of rest by a Poissonian
flip of one spin �see next section for details�: this is one of
the rare examples where a nontrivial stationary dissipative
state can be entirely described. In fact, we generalized the
symmetric model studied in Ref. �1� by allowing for an
asymmetry in the diffusion dynamics. This system is, in
comparison with real dissipative systems, ridiculously
simple, but one can hope that such examples would give
ideas to interpret real experiments or to explain measure-
ments on other variables, correlations, etc. For that purpose,
this paper focuses much more on the physical content of the
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results than on the computational details, that are detailed in
the Appendix . More precisely, the observable we look at is
the energy � provided to the system by the injection mecha-
nism between t and t+� in the permanent regime. For large
�, the probability distribution function �PDF� of � obeys the
large deviation theorem and the probability distribution func-
tion is entirely governed by the large deviation function f
�introduced below�. The procedure of integrating the observ-
able of interest over time has at least two advantages. First,
one can hope that this effective low-frequency filter fades
away “irrelevant” details of the dynamics and provides infor-
mation on a large scale, hopefully more universal phenom-
ena at work; this statement has been proved correct in some
cases �10,11�. Secondly, the experiments are always con-
strained by a finite maximal frequency for the sampling of
the time series: in practice the typical sampling time is much
larger than the fastest relaxation times of the system under
consideration. As a result, the PDFs experimentally mea-
sured are necessarily related to time integrated variables. The
large deviation function is a good representation of these
pdfs in the case where the sampling frequency is small with
respect to the dynamics of the bulk.

The paper is organized as follows: in the next section we
define precisely the model. Sections III and IV are devoted to
the physical results given by our computations. In Sec. V, we
show that the main characteristics of the large deviation
function of the injected power are explained quite well using
a simple phenomenological model, which treats the correla-
tions between the boundary and the bulk in an effective way.
The Appendix gives in detail all the steps of the computation,
based on a free-fermion approach of the intermediate struc-
ture factor.

II. THE MODEL

We consider a one-dimensional �1D� system of N+3 �N
→�� classical spins on a line, labeled from −1 to N+1. The
values of the extremal spins s−1 and sN+1 are fixed �this
choice makes the description in terms of domain walls easier,
as explained in the Appendix �. The zeroth spin s0 is the
locus where energy is injected into the system: the flipping of
s0 is just a Poisson process with rate �, independent of the
state of the other spins. The spins of the “bulk” from s1 to
sN−1 are updated according to an asymmetric T=0 Glauber
dynamics.

The asymmetric T=0 Glauber dynamics is defined as fol-
lows: given 0� p�1, the probability for a spin sj to flip
between t and t+dt is

dt�1 − sj��1 − p�sj−1 + psj+1�� , �1�

which is illustrated in Fig. 1.
Note that if p�q ���, the domain walls are locally drifted

to the left �right�; for p=q=1 /2 we recover the system stud-
ied in Ref. �1� �with the difference, that contrarily to Ref. �1�
the system is not duplicated on each side of s0; this simpli-
fication yields simpler calculations and the physics are a bit
easier to analyze�. Note that the case p�1 /2, where the
domain walls easily invade the system, is probably the most
relevant one for a comparison with experimental devices of

turbulent convection. These dynamics are dissipative but a
nontrivial stationary state is nervertheless reached thanks to
the Poisson process on s0 which injects continuously energy
into the system �the injected energy is positive on average;
however, negative energy injections are also possible fluctua-
tions due to the bulk dynamics�.

III. THE MEAN INJECTED POWER

The mean value of the injected power �	� can easily be
calculated. It is given by �	�=��Prob�s0=s1�−Prob�s0
=−s1��=��s0s1�. To compute Uj = �s0sj� �we are interested
here in the special case j=1�, we notice that the quantity Uj
obeys a closed equation in the permanent regime �see Ref.
�11� for details�:

− �� + 1�Uj + pUj+1 + qUj−1 = 0 �2�

�let us recall that q=1− p� with the boundary conditions U0
=1 and U�=0. The determination of Uj is simple: the poly-
nomial pX2−X��+1�+q has a unique root r less than 1, and
therefore Uj =rj. The mean injected power

�	� = �
� + 1 − ��� + 1�2 − 4pq

2p
�3�

is plotted in Fig. 2. One can see that it is an increasing
function of � and a decreasing function of p. This last point
can be easily understood, as for higher p the domain walls
are more and more confined near the boundary, enhancing
the probability of negative energy injection. On the contrary,
for low values of p, the domain walls invade the system
rather easily: for p�1 /2, they are drifted away from the site

FIG. 1. The rates of the asymmetric Glauber dynamics.
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FIG. 2. Mean injected power as a function of � and p.
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of injection. This is at the origin of a large positive value for
the average injection energy.

IV. THE LARGE DEVIATIONS OF THE INJECTED
POWER

The main result of our paper is the computation of f�	�,
the large deviation function of the injected energy. This is a
central observable associated with the long time �or low fre-
quency� properties of the fluctuations of the energy flux in
stationary systems. Let us call � the energy injected into the
system between t=0 and t=�; typically � scales as � for
large �. The LDF f��� is defined as

f�	� = lim
�→�

�−1 ln�Prob��/� = 	�� . �4�

However, it is simply defined, this quantity is difficult to
compute or analyze theoretically, as it involves the knowl-
edge of the complete dynamics of the system, and measures
the temporal correlations which develop in a nontrivial way
in the nonequilibrium stationary state.

Usually, one computes first the LDF g�
� associated with
the generating function of �:

�e
�� �
�→�

e�g�
�. �5�

More precisely g�
�=lim�→��−1 ln�e
��. Then, f�	� can
be obtained numerically solving the inverse Legendre trans-
form

f�	� = min



�g�
� − 
	� . �6�

The details of the computation of g�
� are postponed in
the Appendix . The formula for g�
� �Eq. �A50�� is not easy
to interpret physically. We are thus in a situation where the
exact result does not really highlight the underlying physics
and, in particular, does not make the long-time properties of
the injection process particularly transparent. In order to
clarify this, we will follow a very pragmatic way: first we
will sketch the different LDFs corresponding to different val-
ues of the relevant parameters �� , p� and raise some ques-
tions associated to them. In the next section, we will see that
some simple phenomenological models account very well for
the observed behaviors �these models were neither discussed
nor even evoked in Ref. �1��.

In Fig. 3�a�, we show various functions f�	� for different
values of the parameters � and p, as a function of 	 / �	�. f�	�
is maximum for 	= �	�, which is a generic property of LDFs.

Clearly, the curvature at the maximum is a major feature
of these curves, and is strongly dependent on the parameters
�� , p�. Writing f�	�=−12�−f���	���	�2��	/�	�−1�2+o�	/�	�
−1�2, we see that the relevant quantity associated to the cur-
vature, once 	 has been rescaled by �	�, is �=−f���	���	�2

=g��0�2 /g��0�. The curves rescaled by the curvature � are
plotted in Fig. 3�b�, where it is seen that the curvature and
the mean energy, though of primordial importance are, how-
ever, not sufficient to characterize fully the LDF: there is no
clear collapse of the curves. The dependence of � with re-
spect to p and � is plotted in Fig. 4�a�.

Its behavior is remarkably similar to that of �	� itself.
Before explaining this point �see next section�, we note that
the mean value of the energy injected up to time � is ���
=��	�; in addition, the �squared� relative fluctuations of this
quantity is given for large � by ���2�− ���2� / ���2=1 / ����.
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The ratio of these two quantities ���2�− ���2� / ���=� / �	�,
called the Fano factor, is plotted in Fig. 4�b�: it is comprised
between 0.5 and 1.3 for all values of the parameters �� , p�,
which shows that the correlation between � and �	�, though
clearly demonstrated, is a bit loose. Thus, a sound question is
to ask why � and �	� are correlated, and what are the factors
which limit or modulate this correlation. These issues will be
discussed in the next section.

Let us go back to the rescaled LDF in Fig. 3�b�. One can
notice that all curves display a noticeable counterclockwise
tilt with respect to the parabola. As for the Fano factor, this
tilt seems to be constant, with some minor relative differ-
ences. To quantify this tilt, one writes the Taylor expansion
of f�	� /� up to the third order as

f�	�/� = −
1

2
�	/�	� − 1�2 +

�

6
�	/�	� − 1�3 + o�	/�	� − 1�3.

�7�

A simple calculation gives �=g��0�g��0� /g��0�2. This pa-
rameter quantifies the tilt and can be a priori positive or
negative. The variation of � with �p ,��, plotted in Fig. 5,
shows a rather complicated dependence of � with respect to
the parameters �in particular, an absolute minimum for p
	0.6 and �0.5�, but with always �� �0.6,1�. Both the
global trend and the finer details raise natural questions: why
is the tilt is always positive? What does it mean concerning
the physics of the system? Why is the dependence on p and
� so complicated? The next section provides a phenomeno-
logical model which give satisfactory answers to these is-
sues.

V. DISCUSSION AND COMPARISON WITH A
SIMPLIFIED MODEL

In this section we compare the results obtained above to a
very simple model, in order to see which global mechanisms
are at work. We consider an oversimplified version of our
system, called in the following “pure Poissonian model”
�PPM�. In this model, the injection is a Poissonian emission
�with rate �� of domain walls �DWs� into the system and the
energy is incremented by one each time a DW is emitted. In
this case, on has ���=�� and ���2�− ���2� / ���2=1 / ����,
that is �	� and � are both equal to �. Thus, in our system, the
global similarity between the two quantities, i.e., � / �	�	1 is

not fortuitous, it is in fact a signature of the approximate
Poissonian structure of the injection.

Conversely, the violation of the relation � / �	�=1, plotted
in Fig. 4�b�, is interesting, as it accounts directly for the
coupling of the Poissonian injection and the structuration of
the system near the boundary. In order to clarify this cou-
pling, we can extend slightly the PPM to account for the
variability of the Fano factor, by considering that in an “ef-
fective” energy injection, not only one domain wall is con-
cerned but, in fact, an average number of domain walls nDW.
For instance, for p�1, where the domain walls are confined
at the boundary, the only way for the system to absorb en-
ergy is the following rare event: a domain wall is created
between s0 and s1, it translates to the right �limiting factor�,
and then comes back to annihilate with another entering do-
main wall. This “injection event” is so rare, that two such
events are necessarily far apart from each other, and the sta-
tistics of these events is actually Poissonian. In fact, one can
see that the effective number of domain walls associated to
one event is two instead of one. Indeed, if one generalizes
the PPM to emit nDW domain walls per event, one gets
� / �	�=1 /nDW: Fig. 4�b� gives nDW�2 in the p�1 region as
expected.

Another region is simple to analyze for ��0, p�0.5 �the
domain walls invade the bulk�, the inner dynamics is so slow
that the effective emission of domain walls invading the bulk
is Poissonian; virtually no domain wall is reabsorbed by the
boundary. One understands that this scenario breaks down
rather abruptly when the drift is directed towards s0, which
explains the singular behavior of the Fano factor at �� , p�
= �0,0.5�. To summarize, the fact that � / �	��1 for the most
part of the parameter range illustrates the cooperative char-
acter of the energy injection.

However, in the special case of large �, small p, one also
expects a Poissonian behavior, determined in this case by the
natural time of the bulk dynamics: for very quick flipping of
the spin s0, and p0, the emission of a domain wall into the
system is only limited by the move of the first domain wall
to the right. The PPM, even modified by the parameter nDW
is unable to account for the region where the Fano factor is
larger than one �namely, this regime of large �, small p�: it is
difficult to imagine an effective Poissonian emission of an
average number of domain walls less than 1. Moreover, if
one also considers also the tilt parameter �, the disagree-
ments are stronger, for it can be easily shown that the PPM
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�with nDW allowed� yields �=1, irrespective of the value of
nDW. We conclude that if the global trend of a positive tilt is
again a signature of the approximate Poissonian nature of the
domain wall injection, the model is a bit too rough to ac-
count for the observed subtleties �except for regions where
��1, which correspond to the cases commented on above�.

In order to get a finer description of the phenomenology,
we can add a new parameter in the PPM model. Instead of
assuming a Poisson process for the emission of domain
walls, we assume a Bernoulli process �14�: the time span
�0, t� is divided into t /�t intervals of length �t, during which
nDW domain walls can be emitted with a probability ��t.
One thus takes into account a possible waiting time after an
emission event during which no other event is on average
allowed. For this model, one easily shows that

�	� = �nDW, �8�

�/�	� =
1

nDW�1 − ��t�
�9�

� =
1 − 2��t

1 − ��t
. �10�

We remark that now the Fano factor can reach values less
than 1. This is the case for small values of � and p�1 /2,
where nDW is certainly one: here the Poissonian character of
the process is imposed by �, but there can be a waiting
period after a flipping of �, due to the finite time required for
the bulk dynamics to remove the domain wall from its first
position.

We remark also that the � factor of the Bernoulli model is
always less than 1, exactly as in the real system. It confirms
also our previous interpretation for the case ��0 and p
�1 /2: a deep decrease of � is observed for increasing values
of �, which is associated in the Bernoulli model with an
increase of �t. By the way, we can extract from the preced-
ing equations the effective parameters nDW, �t, and �, know-
ing �	�, �, and � from our numerical computation:

�t =
1 − �

�
, �11�

nDW = ��/�	��−1�2 − �� , �12�

� =
�

2 − �
. �13�

In Figs. 6, 7, 8�a�, and 8�b�, we see the values of nDW, �t,
�, and ��t, respectively, extracted from the results for the
spin model. The interpretation of Fig. 6 is obvious: as ex-
pected, the average number of domain walls nDW stays close
to one for p0 and all values of �, and reaches 2 for p
�1, the intermediate p values corresponding to a crossover
region.

The quantities �−1 and �t are both related to the natural
timescale of the effective injection process. The main differ-
ence between them is that �−1 is effectively the rate of the
equivalent process, whereas �t is somehow a “waiting time”

during which two injection events have little chance to occur
consecutively. �t is plotted in Fig. 7.

Figure 8�a� shows as expected that the injection process is
very inefficient for ��0 and also for p�1; obviously, this
curve is qualitatively related to �	�, since the efficiency of
the injection has immediate consequences on the mean in-
jected power, but it is interesting to note that � is by no
means constructed from �	�, but from cumulants of higher
order.

Figure 8�b� shows that the system is really Poissonian in
the regions ��0, p�1 /2� and p�1, despite the fact that
�t can be large �Fig. 7�. Note also the vicinity of �=0 and
p�1 /2, where something interesting happens: two factors
that elsewhere favors the Poisson character of the process,
namely, � small and p�1 /2, are simultaneously at work
here and act again each other. The results of this “collision”
is that the process is clearly not Poisson for p around 0.8, due
to huge values of �t �see Fig. 7�; this is also a transitional
region from a Poisson process with one domain wall to a
Poisson process with two domain walls.

Finally, when p�1 /2 and � is away from zero �this is the
region where the Fano fctor is larger than 1�, we find a non-
Poissonian process with �t of the order of 10 to 15 % of �−1.
For instance, when p=0, � increases as � increases: there is
a crossover from a �-limited regime to a bulk-limited regime
for which a waiting time is observed. In this case, the prob-
ability of two close injection events is weakened because an
injection event uses two spin flips: one flips of s0 and then a
flip of s1 �for p=0, s1 can flip only if s1=−s0�; thus the
probability of two events within �t goes as �2��t�4 instead of
���t�2 for a pure Poisson process �PPM�. This explains the
emergence of the waiting time.
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VI. CONCLUSION

In this paper, we have presented a one-dimensional model
of a dissipative system, a half infinite chain of spins at T
=0 in a Glauber dynamics with a drift toward or away from
the boundary, sustained in a nontrivial stationary state by an
injection mechanism, namely, the Poissonian flipping of the
boundary spin. We computed exactly the large deviation
function of the injected power and subsequently the first
three cumulants of its probability distribution, which account
for the mean value of the injected power, its fluctuations and
the skewness of the fluctuations. Using a simple phenomeno-
logical model and its refined version, we have shown that it
can account for the main physical characteristics of the in-
jection process very convincingly, allowing for a relevant
physical interpretation of the variations of the three cumu-
lants with the parameters �� , p� �rate of s0 flipping, magni-
tude of the drift�, in terms of an effective rate of emission of
energy “quanta,” an average number of domain walls in each
quantum, and a possible waiting time after an injection
event.

We can hope that this phenomenology could give an in-
teresting scheme to interpret some experiments, where the
same kind of injection mechanism is more or less repro-
duced. For instance, in a turbulent experiment, unpinning of
vortices created near a moving boundary could be a process
of energy injection suitable for the description framework
that we propose here. We can also think of the bubble regime
in the ebullition process, where the main part of the energy
transfer occurs via unpinning of vapour bubbles. We hope
that some experimental results �15� could find a simple in-
terpretation in the kinetic description that we give here.

Finally our mathematical calculations show that such simple
out-of-equilibrium models are integrable: this opens the way
to more generalizations.

APPENDIX: FERMIONIC APPROACH TO THE TIME-
INTEGRATED INJECTED POWER

It is useful to describe spin systems in the dual represen-
tation of domain walls: between the site j and j+1 is located
the possible domain wall labeled j for j=−1, . . . ,N. The state
of the system is thus characterized by C= �n−1 , . . . ,nN�, where
the ni are either 0 �no domain wall� or 1. There are 2N+2

possible states in this representation; note that the domain
wall n−1 does not play any role, but is required to make the
fermionic description tractable. The dynamical equation for
the probability is given by

�tP�C� = ��P�C0� − P�C�� + 

j=1

N

�P�C j�w�C j → C�

− P�C�w�C → C j�� , �A1�

where C j holds for the state C whose domain wall variables nj
and nj−1 have been changed �according to n→1−n�. The T
=0 asymmetric Glauber dynamics corresponds to

w�C j → C� = 2�1 − pnj − qnj−1� , �A2�

w�C → C j� = 2�pnj + qnj−1� , �A3�

where nj and nj−1 are the variables associated with the state C
�we use this convention hereafter�, and q=1− p.
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We consider that each domain wall contributes as an ex-
citation of energy 1 to the global energy of the system. We
are interested in the energy � injected into the system up to
time t by the Poissonian injection. Following Ref. �13�, the
route to this time integrated observable begins with the con-
sideration of the joint probability P�C ,� , t�, the probability
for the system to be in the state C at time t having received
the energy � from the injection. The dynamical equation for
this quantity is readily

�tP�C,�� = ��P�C0,� − 1�n0 + P�C0,� + 1��1 − n0�

− P�C,��� + 

j=1

N

�P�C j,��w�C j → C�

− P�C,��w�C → C j�� . �A4�

We define next the generating function of � as

F�C� = 

�=−�

�

e
�P�C,�� . �A5�

This quantity, summed up over the states, yields the gener-
ating function �exp�
��� from which one derives its LDF
g�
�:

�e
�� �
t→�

etg�
�. �A6�

This LDF g�
� is closely related to f�p�, the LDF of the
probability density function of �, as they are Legendre trans-
form of each other �11,12�:

Prob��/t = p� �
t→�

exp�tf�p�� , �A7�

f�p� = min



�g�
� − 
p� . �A8�

Let us write the dynamical equation for F:

�tF�C� = ��e
F�C0�n0 + e−
F�C0��1 − n0� − F�C��

+ 2

j=1

N

�F�C j��1 − pnj − qnj−1� − F�C��pnj + qnj−1�� .

�A9�

The function g�
� can be expressed in terms of the linear
operator acting on the “vector” �F�C��C on the right-hand side
�RHS� of �A9�: it is in general its largest eigenvalue.

Our problem belongs to the category of the “free-
fermion” problems, for which a diagonalization of the dy-
namics into independent “modes” can be achieved. The pro-
cedure is described in Ref. �1�, with references therein. In
our case, the operator in the RHS of equation �A9� can be
turned into the following fermionic operator:

H = ��e
c−1
† c0

† + e−
c0c−1 + e
c0
†c−1 + e−
c−1

† c0 − 1�

+ 2

j=1

N

�cjcj−1 + qcj
†cj−1 + pcj−1

† cj − pcj
†cj − qcj−1

† cj−1� .

�A10�

A symmetrization procedure is a prerequisite to solve the
problem. We define a priori the change of variables �note
that the c̃ remain fermionic variables�

c−1 = e−
c̃−1, c−1
† = e
c̃−1

† , �A11�

∀ j � 1, cj = ujcj̃, cj
† =

1

uj
c̃j

†, �A12�

where the uj are real quantities to be defined. The choice

uj =
j�0
�q

p
� j

� � j/2 �A13�

leads to the symmetrized expression �we omit the tildes�

H = ��e2
c−1
† c0

† + e−2
c0c−1 + c0
†c−1 + c−1

† c0 − 1�

+ 2

j=1

N

�� j−1/2cjcj−1 + �pqcj
†cj−1 + �pqcj−1

† cj − pcj
†cj

− qcj−1
† cj−1� , �A14�

= 

n,m=−1

N �cn
†Anmcm +

1

2
cn

†Bnmcm
† +

1

2
cnDn,mcm� − � ,

�A15�

where A is a �N+2�� �N+2� tridiagonal, real, and symmetric
matrix, and B and D �N+2�� �N+2� antisymmetric real;
they are defined by

A =�
0 �

� − 2q 2�pq

2�pq − 2 2�pq

2�pq − 2 2�pq

� � �

2�pq − 2p

� ,

�A16�

B =�
0 �e2


− �e2
 0

0 � , �A17�

D =�
0 − �e−2


�e−2
 0 − 2�1/2

2�1/2 0 − 2�3/2

2�3/2 0 − 2�5/2

� � �

� .

�A18�

This Hamiltonian is diagonalizable, that is, it can be writ-
ten
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H = �
q

�q��q
†�q −

1

2
� +

1

2
TrA

−N

− � ,

�A19�

where the �q are fermionic operators linearly related to the cj
and the eigenvalues �q are the eigenvalues with a positive
real part �we could have chosen the other half as well, see
below� of the matrix

M0 = A B

D − A
� . �A20�

�The details of this procedure are exposed in Ref. �1�; note
that the lack of translational invariance prevents the use of a
Fourier transformation.�

The eigenvalues of H are thus given by

1

2

q

�q	q − N − � , �A21�

where the 	q are �1. In particular, the largest eigenvalue of
H reads

g�
� =
1

2

q

Re��q� − N − � , �A22�

=
1

4i�
� d��

�0����
�0���

− N − � , �A23�

where �0 is the characteristic polynomial of M0 and the con-
tour of integration is diverging half circle leant on the imagi-
nary axis, with its curved part pointing toward the region
Re����0.

1. The characteristic polynomial: Introduction

The problem is now equivalent to finding the characteris-
tic polynomial of M0. We can take advantage of the empti-
ness of B. We define E���= �A+��−1D�A−��−1. Multiplying
�Id−M0 by

�� − A�−1 0

�� + A�−1D�� − A�−1 �� + A�−1 � �A24�

we see that

�0��� = �A����A�− ��det�1 + BE���� , �A25�

where �A���=det�A−��. In addition

det�1 + BE� = �1 − �e2
E−1,0��1 + �e2
E0,−1�

+ �2e4
E0,0E−1,−1 �A26�

=�1 + �e2
E0,−1�− ����1 + �e2
E0,−1����

+ �2e4
E0,0���E−1,−1��� , �A27�

where we exploited the fact that ET���=−E�−��. Note in
passing that the symmetry of this expression with respect to
�→−�, is here explicit, as the Ejj are antisymmetric func-
tions of �.

2. Some minors of �Id+A

We term � j �j=0, . . . ,N+1� the determinant of the minor
of ��+A� obtained by keeping the �N+1− j�� �N+1− j� ma-
trix located at the bottom right side of ��+A� �one adopts the
convention �N+1=1�. Note that �N=−2p+�, �N−1= ��
−2���−2p�−4pq, and that we have that det��+A�=��0
−�2�1. We have also an explicit formula, valid for j�0:

� j =
1

1 − 4pqx+
2 ��2qx+ + 1�x+

j−N−1 − 2qx+�2px+ + 1�

��4pqx+�−j+N+1� , �A28�

where x+ is conventionally the root of the polynomial
−4pqX2+ ��−2�X−1=0 with the largest modulus. Note that
x+ and � j depends on �. Later on, we will denote x−
=x+�−�� and � j

−=� j�−��; let us stress here that x+ and x− are
roots of different polynomials.

3. The characteristic polynomial: Explicit calculation

From the definition E= �A+��−1D�A−u�−1, one gets after
some computations

W =
1

2q


j=1

N

�4q2� j�� j+1� j
− − � j+1

− � j� , �A29�

E0,−1 =
�

det�A + ��det�A − ��
�e−2
�1���0

− − �2�1
−� + 2�W� ,

�A30�

E−1,−1 =
− �2

det�A + ��det�A − ��
���1�0

− − �1
−�0�e−2
 + 2W� ,

�A31�

E0,0 =
− �

det�A + ��det�A − ��
�2�2e−2
�1�1

− − 2�W�

�A32�

from which one deduces

�0��� = − �2�0�0
− + 2�2���0

−�1 − �0�1
−� + 4�2�e2
W .

�A33�

Let us analyze W. Using Eqs. �A23� and �A22�, one easily
shows that W has five different terms, respectively, propor-
tional to ��4pq�2x+x−�N, �x+x−�−N, �x+ /4pqx−�N, �x− /4pqx+�N,
and �4q2�N. From the definition of x+ and x−, one has always
4pq�x��2�1. This shows that the first term always dominates
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all but the last. A slight issue arises here, for the last is not
always the least: for q�1 /2, the first is still dominating, but
for q�1 /2 this is not the case for all values of � in the right
half plane P= �� ;Re����0�. Let us term J the zone in P
where 4q2� �4pq�2�x+x−�. Two key features of J are that �i�
it is bounded �compact� and �ii� it crosses the vertical line
Re���=0 only at one point, �=0. To prove that, we remark
that on that line x−=x

+
* �complex conjugate�; moreover

x+��=0�=1 /2p and x+�−iy�=x+�iy�*: the maximum prin-
ciple leads to the conclusion that �x+�iy�� is a function of y,
minimum at y=0.

As a result, the contour of integration in Eq. �A23� can
always be chosen such that, except for the single point �
=0, it does not cross the region J �it encloses it anyway�. In
that case, the thermodynamic limit can be safely taken for all
values of q, and leads to the complete vanishing of the term
proportional to �4q2�N in the result, dominated by the first
one. This mathematical argument yields a great simplifica-
tion, as one can consider that at the thermodynamic limit, W
is always dominated by the term ���4pq�2x+x−�N and throw
away the others.

According to the preceding discussion, we are left with

W =
N→�

2pA+A−

4p2x+x− − 1
�16p2q2x+x−�N�x− − x+� , �A34�

A� =
2qx��2px� + 1�

4pqx�
2 − 1

. �A35�

�A36�

Similarly, we can write for j�1

� j =
N→�

A+�4pqx+�−j+N+1. �A37�

As regards �0, we have �0= �−2q+���1−4pq�2. Thus,

�0 =
N→�

A+�4pqx+�N�− 2q + � − 1/x+� �A38�

=A+�4pqx+�N � 2p�1 + 2qx+� . �A39�

As a result, we get

�0��� = A+A−��4pq�2x+x−�N � − 4p2�2�1 + 2qx+��1 + 2qx−�

+ 8pq�2��x− − x+� + 8p�2�e2
 x− − x+

4p2x+x− − 1
� �A40�

=A+A−��4pq�2x+x−�N4p� � − p��1 + 2qx+��1

+ 2qx−� + 2�2�x− − x+�
4p2qx+x− + p

4p2x+x− − 1
+ 2�2�x−

− x+�
e2
 − 1

4p2x+x− − 1
� . �A41�

This expression can be transformed in the following way. We
can demonstrate the relations

1

4pqx+x− − 1
=

1

2�
 1

x−
−

1

x+
� , �A42�

�1 + 2qx+��1 + 2qx−��4p2x+x− − 1� = �2x+x−
1 + 4pqx−x+

1 − 4pqx−x+

�A43�

�for the first, multiply the LHS by �x+ /x−−1�−1; for the sec-
ond, use the fact that x� are roots of second degree polyno-
mials�. Thus we can write

�0��� = A+A−��4pq�2x+x−�N4p2

� �4�2 − �2��1 + 2qx+��1 + 2qx−�

+
2�2�

p
�x− − x+�

e2
 − 1

4p2x+x− − 1
� , �A44�

=A+A−��4pq�2x+x−�N4p2�4�2 − �2��1 + 2qx+��1

+ 2qx−� � 1 +
4�2/p

4�2 − �2

e2
 − 1

4pqx+x− + 1
� . �A45�

4. An integral formula for g

It is useful for the sequel to give explicit formulas for x+
and x− in the half plane P= �� ;Re����0�. A careful inspec-
tion shows that x+ is given by

x+��� = ��8pq�−1 � �� − 2 − ��� − 2�2 − 16pq� if Re��� � �0,2� ,

�8pq�−1 � �� − 2 + ��� − 2�2 − 16pq� if Re��� � 2.
� �A46�

It must noted that, contrary to appearances, x+ is analytic on
the line Re���=2. It has, however, a branch cut, localized on
the segment �� �2−4�pq ,2+4�pq�. The behavior of x− is
entirely different:

x−��� = − �8pq�−1 � �� + 2 + ��� + 2�2 − 16pq�
�A47�

and is analytic on P.
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Let us go back to formula �A23�. We see that only the
logarithmic derivative of �0 is involved, so we can handle
the different terms of Eq. �A45� separately. For sake of clar-
ity, we define

I�f� =
1

4i�
�

+
d��

f����
f���

�A48�

over a contour �followed counterclockwise� in P large
enough to encircle all the singularities of f .

The terms x�
N : as x− it is an analytic function of � over P,

we get I�x−
N�=0 �obviously neither x− nor x+ can go to zero�.

The term I�x+
N� gives a nonzero contribution due to the

branch cut of x+. We remark that on it, �x+�=2�pq and x+
describes counterclockwise the circle of radius 2�pq. Thus,

I�x+
N� =

N

4i�
�

�z�=2�pq

dz

z
�4pqz + z−1 + 2� = N . �A49�

The term �4�2−�2� yields I�4�2−�2�=�. We show easily
that A��1+2qx��= ��x�

2 / �4pqx�
2 −1�. We conclude easily

that I�A−�1+2qx−��=0, for 4pqx−
2 −1 never vanishes. As re-

gards I�A+�1+2qx+��, a transformation similar to Eq. �A49�
also gives I�A+�1+2qx+��=0.

Finally, from these results, we see that all terms but the
last in Eq. �A45� cancel with constant terms in Eq. �A23�. To
give the final result a convenient form we remark that the
contour of integration can be make infinite, that the semicir-
cular part gives a vanishing contribution to the result, and
that on the vertical line Re���=0, x+=x

−
*. We can thus write

g�
� =
2

�
�

0

�

dy ln1 +
�2/4p

�2/4 + y2

e2
 − 1

��y� + 1
� , �A50�

��y� = 4pq�x−�4iy��2 = �4pq�−1 � �2iy + 1

+ ��2iy + 1�2 − 4pq�2. �A51�

We verify immediately that g�0�=0 as expected. We can
also check that g��0�= ���:

g��0� =
2�2

p�
�

−�

� dy

��2 + 4y2����y� + 1�
�A52�

=
− �2

2p�
�

−�

� dy

�2 + 4y2 1

x+�4iy�
+

1

x−�4iy��
�A53�

=−
�2

p�
Re �

−�

� dy

�2 + 4y2

1

x−�4iy�

=
�

2p
�� + 1 − ��� + 1�2 − 4pq� . �A54�

We mention �without computations� also the result we
would obtain, if we had considered, as in Ref. �1�, two half
lines of spins connected to s0 �i.e., spins numbered
s−1 ,s−2 , . . .�. In this case, despite the fact that the two sub-
systems are connected only via the Poisson spin s0, they are
nontrivially coupled to each other, and the corresponding
large deviation function of the cumulants reads

g�
� =
2

�
�

0

�

dy

�ln1 +
�2/4p

�2/4 + y2

e2
 − 1

��y� + 1
�2 +

e2
 − 1

p���y� + 1��� .

�A55�

We see clearly that there is no simple correspondence be-
tween the half line model and the two half lines model: g is
multiplied inside the logarithm by an 
-dependent term.

�1� J. Farago and E. Pitard, J. Stat. Phys. 128, 1365 �2007�.
�2� R. Labbé, J. F. Pinton, and S. Fauve, J. Phys. II 6, 1099

�1996�.
�3� S. Aumaître, S. Fauve, and J. F. Pinton, Eur. Phys. J. B 16, 563

�2000�.
�4� S. Aumaître, S. Fauve, S. McNamara, and P. Poggi, Eur. Phys.

J. B 19, 449 �2001�.
�5� D. J. Evans, E. G. D. Cohen, and G. P. Morriss, Phys. Rev.

Lett. 71, 2401 �1993�.
�6� G. Gallavotti and E. G. D. Cohen, Phys. Rev. Lett. 74, 2694

�1995�.
�7� J. Kurchan, J. Phys. A 31, 3719 �1998�.
�8� J. Kurchan, e-print arXiv: cond-mat/0511073.

�9� S. Ciliberto and C. Laroche, J. Phys. IV 8, Pr6-215 �1998�.
�10� T. Bodineau and B. Derrida, Phys. Rev. Lett. 92, 180601

�2004�.
�11� J. Farago, J. Stat. Phys. 107, 781 �2002�.
�12� J. Farago, Physica A 331, 69 �2004�; , J. Stat. Phys. 118, 373

�2005�.
�13� B. Derrida and J. L. Lebowitz, Phys. Rev. Lett. 80, 209

�1998�.
�14� W. Feller, An Introduction to Probability Theory and its Appli-

cations �Wiley, New York, 1957�; N. G. van Kampen, Stochas-
tic Processes in Physics and Chemistry �North Holland, Am-
sterdam, 1992�.

�15� S. Aumaître and S. Fauve, Europhys. Lett. 62, 822 �2003�.

JEAN FARAGO AND ESTELLE PITARD PHYSICAL REVIEW E 78, 051114 �2008�

051114-10


